API Reference

Independence

MaxMargin(indep_test[, compute_distkern, bias])

Maximal Margin test statistic and p-value.

KMERF([forest, ntrees, compute_distance, ...])

Kernel Mean Embedding Random Forest (KMERF) test statistic and p-value.

MGC([compute_distance])

Multiscale Graph Correlation (MGC) test statistic and p-value.

Dcorr([compute_distance, bias])

Distance Correlation (Dcorr) test statistic and p-value.

Hsic([compute_kernel, bias])

Hilbert Schmidt Independence Criterion (Hsic) test statistic and p-value.

HHG([compute_distance])

Heller Heller Gorfine (HHG) test statistic and p-value.

CCA()

Cannonical Correlation Analysis (CCA) test statistic and p-value.

RV()

Rank Value (RV) test statistic and p-value.

FriedmanRafsky(**kwargs)

Friedman-Rafksy (FR) test statistic and p-value.

D-Variate

dHsic([compute_kernel, bias])

\(d\)-variate Hilbert Schmidt Independence Criterion (dHsic) test statistic and p-value.

K-Sample

KSample(indep_test[, compute_distkern, bias])

Nonparametric K-Sample Testing test statistic and p-value.

Energy([compute_distance, bias])

Energy test statistic and p-value.

MMD([compute_kernel, bias])

Maximum Mean Discrepency (MMD) test statistic and p-value.

DISCO([compute_distance, bias])

Distance Components (DISCO) test statistic and p-value.

MANOVA()

Multivariate analysis of variance (MANOVA) test statistic and p-value.

Hotelling()

Hotelling \(T^2\) test statistic and p-value.

SmoothCFTest([num_randfreq])

Smooth Characteristic Function test statistic and p-value

MeanEmbeddingTest([num_randfreq])

Mean Embedding test statistic and p-value.

KSampleHHG([compute_distance])

HHG 2-Sample test statistic.

Time-Series

Discriminability

Conditional Independence

Kernel Goodness-of-Fit

Simulations

Independence Simulations

indep_sim

K-Sample Simulations

Time-Series Simulations

Miscellaneous

independence.sim_matrix(model, x)

Computes the similarity matrix from a random forest.

ksample.k_sample_transform(inputs[, test_type])

Computes a k-sample transform of the inputs.

ksample.smoothCF.smooth_cf_distance(difference)

Calculates the Smooth CF test statistic using the vector of differences.

ksample.mean_embedding.mean_embed_distance(...)

Calculates the Mean Embedding test statistic using the vector of differences.

Base Classes

independence.base.IndependenceTest([...])

A base class for an independence test.

d_variate.base.DVariateTest([compute_kernel])

A base class for a \(d\)-variate independence test.

ksample.base.KSampleTest([compute_distance, ...])

A base class for a k-sample test.